“News neutrality by unbiased coverage”
One News Page
> >

Researchers from Rensselaer built smart lighting systems using distributed color sensors

PRWeb Friday, 4 December 2015
Signal Analysis and Machine Perception Laboratory, Rensselaer Polytechnic Institute presents their low-cost and privacy-preserving occupancy sensing technique for monitoring indoor human activities

Troy, NY (PRWEB) December 04, 2015

Researchers from Rensselaer Polytechnic Institute presented a smart lighting system which can intelligently optimize the lighting condition based on human activities at International Conference on Pattern Recognition in Stockholm.

Lighting systems are installed in every home and office. They are used by everyone, and have been an essential part of modern lives. According to the U.S. Energy Information Administration, about 11% of total U.S. electricity consumption was used for lighting in the year of 2014. The percentage is 15% for residential and commercial sectors. The task of smart lighting is to improve our current lighting systems, to reduce energy consumption, and to enhance human comfort, well-being, and productivity.

A great effort in smart lighting is occupancy sensing, which is to use particular sensors to monitor the use of the space, such that light is only produced when and where it is needed. Existing occupancy sensing solutions have all kinds of drawbacks. For example, camera-based occupancy sensing is not only expensive, but also raises concerns of privacy and information security.

The Signal Analysis and Machine Perception Laboratory at Rensselaer Polytechnic Institute invented a novel solution, named COlor-Sensor-Based Occupancy Sensing, or simply COSBOS. The sensors used by them are very cheap photodiode-based color sensors that do not capture any images. Thus their sensing system is very low-cost, and unlike using cameras, it protects the privacy of users. Their system is based on two key ideas. The first idea is to modulate a small signal to the light emitted from the LED lighting fixtures. This signal is very small, thus cannot be observed by human, but can be measured by color sensors. The measured signal from the sensors is used to recover a "light transport model" - a mathematical model to describe how photons transport in the space. The second idea is to use machine learning techniques to predict where blockage and reflection happen in the space, and reconstruct a "heatmap" showing where human activities are in the room.

“With this occupancy sensing technique, we can monitor the use of an indoor space, and design intelligent illumination control strategies to only deliver light at the right place and the right time, which will greatly reduce energy consumption,” said Dr. Quan Wang, the first author of this work.

“If this technique becomes commercialized in the future, it would potentially change the way people interact with the space they live in,” according to a post from Technology Org on December 2, 2015:

Additional information can be obtained from Dr. Quan Wang, Rensselaer Polytechnic Institute, or from their project website:

Reference: Wang et al., Occupancy distribution estimation for smart light delivery with perturbation-modulated light sensing. Journal of Solid State Lighting 2014 1:17.
Share on
Share on
Post on 
Share by

You Might Like

Tweets about this

Other recent news in Press Releases

Medtrics Lab Receives 2018 Production Innovation Award from Bucknell UNIVERSITY SBDCAMERICAN IRA Hosts Webinar on Self-Directed IRAs, Reverse Mortgage Loans, and Retirement
Back To School Special For Teachers - No Cost Offer For Latest ezCheckPersonal SOFTWAREBrahma Group to Invest on Projects Worth Rs. 3,250 Cr in GURUGRAM
Environmentally friendly: One News Page is hosted on servers powered solely by renewable energy
© 2018 One News Page Ltd. All Rights Reserved.  |  About us  |  Disclaimer  |  Press Room  |  Terms & Conditions  |  Content Accreditation
 RSS  |  News for my Website  |  Free news search widget  |  Help  |  Contact us  |  DMCA / Content Removal  |  Privacy & Data Protection Policy
How are we doing? Send us your feedback  |   LIKE us on Facebook   FOLLOW us on Twitter   FIND us on Google+